Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms.

نویسندگان

  • R H LaMotte
  • C N Shain
  • D A Simone
  • E F Tsai
چکیده

1. Psychophysical studies were made, in humans, of the sensory characteristics and underlying mechanisms of the hyperalgesia (often termed "secondary hyperalgesia") that occurs in uninjured skin surrounding a local cutaneous injury. The hyperalgesia was characterized by lowered pain thresholds and enhanced magnitude of pain to normally painful stimuli. The "injury" was produced by a single intradermal injection of 10 microliters of 100 micrograms of capsaicin, the algesic substance in hot chili peppers. 2. On injection of capsaicin into the volar forearm, the subjects experienced intense burning pain, accompanied immediately by the formation of three areas of hyperalgesia surrounding the injection site. The largest mean area (55 cm2) was hyperalgesic to a normally painful punctate stimulation of the skin. Nested within this was an area of tenderness to gentle stroking (38 cm2) and a much smaller area of hyperalgesia to heat (2 cm2). An area of analgesia to pinprick, approximately 4 mm in diameter and centered on the injection site, developed within minutes and typically disappeared within 24 h. The hyperalgesia to heat and to stroking disappeared within 1-2 h, whereas the hyperalgesia to punctate stimuli, although gradually decreasing in area, lasted from 13 to 24 h. 3. The radial spread of the mechanical hyperalgesia (to punctate and stroking stimuli) away from the injury was dependent on neural activity and not produced, for example, by algesic substances transported away from the injury. The injection of capsaicin into a small area of anesthetized skin did not produce hyperalgesia in the surrounding, unanesthetized skin. Also, the hyperalgesia in normal skin readily crossed a tight arm band that blocked the circulation of blood and lymph. 4. The spread of mechanical hyperalgesia away from the injury was peripherally mediated via cutaneous nerve fibers because it was blocked by a thin mediolateral strip of cutaneous anesthesia placed 1 cm away from the capsaicin injection site. Hyperalgesia developed normally on the capsaicin side of the strip but not on the other side. 5. Heat stimulation of the skin that produced pain that was equivalent in magnitude and time course to that produced by an injection of capsaicin (10 micrograms) resulted in much smaller areas of mechanical hyperalgesia. It was postulated that there exist special chemosensitive primary afferent nerve fibers that are more effective in producing mechanical hyperalgesia than are the known thermo- and mechanosensitive nociceptive nerve fibers. 6. Once developed, the mechanical hyperalgesia became only partially dependent on peripheral neural activity originating at the site of injury.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cannabinoid receptor-specific mechanisms to alleviate pain in sickle cell anemia via inhibition of mast cell activation and neurogenic inflammation.

Sickle cell anemia is a manifestation of a single point mutation in hemoglobin, but inflammation and pain are the insignia of this disease which can start in infancy and continue throughout life. Earlier studies showed that mast cell activation contributes to neurogenic inflammation and pain in sickle mice. Morphine is the common analgesic treatment but also remains a major challenge due to its...

متن کامل

Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms

Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles an...

متن کامل

High-Concentration L-Menthol Exhibits Counter-Irritancy to Neurogenic Inflammation, Thermal and Mechanical Hyperalgesia Caused by Trans-cinnamaldehyde.

UNLABELLED The transient receptor potential cation channel subfamily M 8 (TRPM8) agonist L-menthol has been used traditionally for its topical counterirritant properties. Although the use of topical L-menthol for pain is casuistically established, evidence regarding its efficacy is negligible. This study aimed to characterize the effect of L-menthol as a counterirritant on cutaneous pain and hy...

متن کامل

The UVB cutaneous inflammatory pain model: a reproducibility study in healthy volunteers.

BACKGROUND The human ultraviolet-B (UVB) experimental pain model induces cutaneous neurogenic inflammation, involves hyperalgesia, and is widely used as a pharmacological screening pain model. AIM To estimate the test-retest reliability of the UVB pain model by application of a comprehensive set of vasomotor and quantitative sensory assessment methods and to estimate sample sizes required for...

متن کامل

Role of the Na+-K+-2Cl- cotransporter in the development of capsaicin-induced neurogenic inflammation.

Recent behavioral and electrophysiological studies have attributed an important role to dorsal root reflexes (DRRs) in the initiation and development of neurogenic inflammation produced by intradermal capsaicin (CAP). The DRRs can occur in peptidergic fibers, resulting in peripheral release of neuromediators that produce vasodilation, plasma extravasation and subsequently hyperalgesia and allod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 66 1  شماره 

صفحات  -

تاریخ انتشار 1991